The Adjoint Representation of a Reductive Group and Hyperplane Arrangements

نویسنده

  • J. MATTHEW DOUGLASS
چکیده

Let G be a connected reductive algebraic group with Lie algebra g defined over an algebraically closed field, k, with char k = 0. Fix a parabolic subgroup of G with Levi decomposition P = LU where U is the unipotent radical of P . Let u = Lie(U) and let z denote the center of Lie(L). Let T be a maximal torus in L with Lie algebra t. Then the root system of (g, t) is a subset of t∗ and by restriction to z, the roots of t in u determine an arrangement of hyperplanes in z we denote by Az. In this paper we construct an isomorphism of graded k[z]-modules HomG(g ∗, k[G×P (z + u)]) ∼= D(Az), where D(Az) is the k[z]-module of derivations of Az. We also show that HomG(g∗, k[G×P (z + u)]) and k[z]⊗HomG(g∗, k[G×P u]) are isomorphic graded k[z]-modules, so D(Az) and k[z]⊗HomG(g∗, k[G×P u]) are isomorphic, graded k[z]-modules. It follows immediately that Az is a free hyperplane arrangement. This result has been proved using case-by-case arguments by Orlik and Terao. By keeping track of the gradings involved, and recalling that g affords a self-dual representation of G, we recover a result of Sommers, Trapa, and Broer which states that the degrees in which the adjoint representation of G occurs as a constituent of the graded, rational G-module k[G×P u] are the exponents of Az. This result has also been proved, again using case-by-case arguments, by Sommers and Trapa and independently by Broer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Adjoint Representation in Rings of Functions

Let G be a connected, simple Lie group of rank n defined over the complex numbers. To a parabolic subgroup P in G of semisimple rank r, one can associate n−r positive integers coming from the theory of hyperplane arrangements (see P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167-189; Coxeter arrangements, in Proc. of Symposia in Pur...

متن کامل

A remark on asymptotic enumeration of highest weights in tensor powers of a representation

We consider the semigroup $S$ of highest weights appearing in tensor powers $V^{otimes k}$ of a finite dimensional representation $V$ of a connected reductive group. We describe the cone generated by $S$ as the cone over the weight polytope of $V$ intersected with the positive Weyl chamber. From this we get a description for the asymptotic of the number of highest weights appearing in $V^{otime...

متن کامل

Maximal prehomogeneous subspaces on classical groups

Suppose $G$ is a split connected‎ ‎reductive orthogonal or symplectic group over an infinite field‎ ‎$F,$ $P=MN$ is a maximal parabolic subgroup of $G,$ $frak{n}$ is‎ ‎the Lie algebra of the unipotent radical $N.$ Under the adjoint‎ ‎action of its stabilizer in $M,$ every maximal prehomogeneous‎ ‎subspaces of $frak{n}$ is determined‎.

متن کامل

Tutte polynomials of hyperplane arrangements and the finite field method

The Tutte polynomial is a fundamental invariant associated to a graph, matroid, vector arrangement, or hyperplane arrangement, which answers a wide variety of questions about its underlying object. This short survey focuses on some of the most important results on Tutte polynomials of hyperplane arrangements. We show that many enumerative, algebraic, geometric, and topological invariants of a h...

متن کامل

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999